Tree rings and Drought Indices

21 11 2012

Kevin Anchukaitis

On November 14, Nature published a paper by  Justin Sheffield and colleagues with the title ‘Little change in global drought over the past 60 years’.  The paper describes the consequences of a bias in an index of drought, the Palmer Drought Severity Index (PDSI), which incorporates precipitation, temperature, and soil moisture storage into a single measure of drought severity.  The index is designed so as to indicate ‘normal’ (average) conditions at zero, with negative values indicating drought and positive values indicating pluvial (wetter) conditions.  Sheffield et al. note that the bias they identify arises from ‘a simplified model of potential evaporation [Thornthwaite model] that responds only to changes in temperature’. Indeed, this is something that scientists in the drought community have been aware of — For example, Aiguo Dai published a paper last year in the Journal of Geophysical Research in which he noted that

Another major complaint about the PDSI is that the [potential evaporation] calculated using the Thornthwaite equation (Thornthwaite,1948) in the original Palmer model could lead to errors in energy‐limited regions [Hobbins et al., 2008], as the Thornthwaite PE (PE_th) is based only on temperature, latitude, and month.

Similar to the Sheffield et al. paper, Dai looked at variants of the PDSI, including one calculated using the Penman-Monteith equation, which incorporates radiation, humidity, and wind speed as well as precipitation and temperature.  As their headline results, Sheffield et al. write that:

More realistic calculations, based on the underlying physical principles that take into account changes in available energy, humidity and wind speed, suggest that there has been little change in drought over the past 60 years.

While Dai came to a different conclusion:

The use of the Penman-Monteith PE and self-calibrating PDSI only slightly reduces the drying trend seen in the original PDSI.

This is one of those times to be wary of what Andrew Revkin has called ‘single study syndrome‘. As I am quoted saying in a ScienceNews article, I think the jury’s still out on the reason for the differences between the two groups and the implications.   Certainly, and as Sheffield et al. note, some of the difference is likely in part due to the treatment of uncertainties in the data for radiation, humidity, and wind speed that go into the Penman-Monteith equation.  Another solid resource on this issue is this Carbon Brief article by Freya Roberts.  In a larger sense, too, this is about what we actually mean by the term drought and how we chose to define and measure it.  John Fleck has this aspect extremely well-covered here, here, here, and here (also here, here, and here).

I wanted to address here, however, a question that arose in a Twitter string between journalists John Fleck and Keith Kloor, and climate scientists Jonathan Overpeck, Simon Donner, Ben Cook, Richard Betts, and myself — namely, since many tree-ring drought reconstructions are reconstructions of the PDSI, what does this mean for our understanding of past megadroughts?

Despite some of its weaknesses, the PDSI (even with the Thornthwaite model) still has some desirable characteristics.  First, it attempts to capture the influence of temperature on evapotranspiration, and so reflects more than just precipitation.  Second, since it describes dimensionless anomalies, it is theoretically comparable over large regions.  Third, since it simulates soil moisture storage, it can capture the importance of a previous season’s rain (or snow) on subsequence moisture availability. Finally, the Thornthwaite model can be calculated using precipitation and temperature, climate data that are more readily available back in time compared to the radiation, humidity, and wind speed data needed for  Penman-Monteith.  I should note that not all the assumptions implicit or explicit in the above hold true at all times or over all places.  Still, one is tempted to paraphrase Churchill on democracy.  Or was that Mark Twain?

So does the fact that many tree-ring reconstructions of drought — particularly the North American and Monsoon Asia Drought Atlases — use the Palmer Drought Severity Index as their ‘target’ (predictand) field mean that we have to re-evaluate our ideas about past megadroughts?  Not yet.  The first thing to keep in mind is that all the information we have about past drought comes from proxy measurements like tree-ring width (and lake sediments and speleothems and ice cores, to name a few) and not from observations of PDSI.  To put it another way, it is the sustained narrowness of growth rings in many trees over many decades and at many sites that leads us to infer something about the timing, extent, and relative magnitude of past droughts.  When we reconstruct the PDSI (or precipitation or temperature), we are in essence taking the part of the instrumental PDSI record that overlaps with the tree-ring record and using that period of overlap to calibrate and validate a statistical model that translates tree-ring width into an estimate of PDSI.  We are taking the tree-ring measurement data and putting them into units of climate.

Sheffield et al. talk briefly about the implications for paleoclimate reconstruction of drought and get this part right:

… the tree-ring data, which reflect real variations in climatic and non-climatic factors …

Or to put it another way, tree-ring width reflects climate, but PDSI might not accurately reflect drought severity because of the way temperature is used to calculate potential evapotranspiration.  As an example of this potential problem in the modern record, Sheffield et al. cite two papers they say show a diverging relationship (‘diverge from the instrumental-based PDSI_Th in recent decades’ between PDSI and ring width’) — unfortunately, this is where things start to go a bit wrong:

Fang, K. Y. et al. Drought variations in the eastern part of northwest China over the past two centuries: evidence from tree rings. Clim. Res. 38, 129–135 (2009).

deGrandpre, al. Seasonal shift in the climate responses of Pinus sibirica,Pinus sylvestris, and Larix sibirica trees from semi-arid, north-central Mongolia. Can. J. For. Res. 41, 1242–1255 (2011)

Both papers describe climate and tree growth relationships in semi-arid regions of China and Mongolia.  The second, by deGrandpre and coauthors (which, in the interest of disclosure, includes some of my own coauthors on related projects), doesn’t actually discuss any divergence between PDSI and tree-ring width.  The first, by Keyan Fang and coauthors, does show a period of separation between ring width and PDSI, but only between 1997 and 2003, the end of their record:

Fang et al. Figure 5

The authors of Fang et al. discuss this feature of their study, saying:

The abnormally dry conditions from 1997 to 2003 (Fig. 5) might have been caused by the significant drying trend and a poor PDSI model fit (Liang et al. 2007). That is, the current PDSI model for this region might have overestimated the effects of the warming trend on the local moisture conditions since 1997, resulting in abnormally dry PDSI values.

So, they are essentially (briefly) worrying about the same phenomenon that Sheffield et al. describe — that higher temperatures are biasing the calculation of the PDSI here.  I’m hesitant to read any more into a single study of a single species in a single location, but it is interesting to note that, if Fang et al. are correct and the lower PDSI values after 1997 are indeed a reflection of ‘overestimated the effects of the warming’  on the PDSI, their tree-rings didn’t ‘fall for it’ — they don’t follow PDSI into biased territory.  This should give us more confidence that the trees are reflecting moisture conditions, but it gives us less confidence in the PDSI.

Strangely, Sheffield and coauthors also briefly speculate about the Divergence Problem in formerly temperature-sensitive trees at some northern treeline sites.  Unfortunately, they get this part rather wrong — the mechanism they describe for the influence of temperature on tree-ring width isn’t correct and PDSI is completely unrelated to the divergence problem in these trees.

In case you’re still concerned about the existence of megadroughts identified in tree-ring chronologies (and other proxies) from places like the western United States, it is important to point out that a lot of the evidence for these events doesn’t even involve reconstructions of the PDSI.  For instance, Scott Stine’s important 1994 megadrought study is based on the dates of now-drowned Medieval trees in the Sierra Nevada of California (indicating sustained and dramatically lower lake levels at times prior to the 14th century). Henri Grissino-Mayer’s amazing 2000+ year reconstruction of drought from El Malpais in New Mexico is of water year precipitation, not PDSI.  And Dave Meko, Connie Woodhouse, and other have reconstructed streamflow, not PDSI, in the Colorado River basin.    Evidence for megadroughts comes from the proxies themselves, not the modern instrumental data like PDSI.

So why worry about the problems in the PDSI if you’re a paleoclimatologist like myself? It is possible that we’re on the cusp of this becoming a problem for the calibration of our statistical reconstruction models, although nothing like the ‘divergence’ seen in Fang et al. has thus far emerged (yet) at most tree-ring sites that I’m aware of.  Also, we’d like to be able to compare past droughts from the paleoclimate record with modern droughts from the instrumental data and future droughts from climate models.  But to do so, we need a metric that reliably will tell us the same thing across those epochs.  Evidence has been accumulating for years that PDSI presented a problem for this goal of integrating data and models and the past into understanding the future.  Our group has been looking into ways to deal with this for several years on issues including probabilistic drought forecasting and comparisons between models and paleoclimate data.  Hoerling and colleagues recently published a paper in the Journal of Climate looking at the PDSI and specifically predictions of imminent drying in the U.S. Great Plains.  They write  that:

PDSI is shown to be an excellent proxy indicator for Great Plains soil moisture in the 20th Century; however, its suitability breaks down in the 21st Century with the PDSI severely overstating surface water imbalances and implied agricultural stresses. Several lines of evidence and physical considerations indicate that simplifying assumptions regarding temperature effects on water balances especially concerning evapotranspiration in Palmer’s formulation compromise its suitability as drought indicator in a warming climate.

PDSI tracks soil moisture and precipitation well through the 20th century, but after that time becomes a biased indicator of drought conditions.

Hoerling et al. 2012 Figure 3

Richard Seager talked to John Fleck about this issue as well, pointing to this paper by Burke et al.

So what’s the solution for paleoclimatologists, if we’d still like to keep some of the attractive elements of the PDSI but enable better comparisons between past, present, and future droughts?  We might have to trade some of the desirable traits of the PDSI for potentially less-biased — but more uncertain or incomplete — drought metrics like modeled soil moisture. When comparing past climates and GCM simulations, we might utilize forward models to transform simulated climate into simulated tree-ring widths or other proxy measures, as opposed to the normal approach of transforming proxy data into climate variables.

In summary, the Sheffield et al. result doesn’t really cast any doubt on our knowledge of the existence, timing, during, and relative magnitude of past megadroughts.  What it does do — along with the other papers, particularly those by Hoerling and Dai, discussed above — is make us (dendroclimatologists) think about other drought metrics we might want to reconstruct to enable the most accurate comparisons across timescales and between paleoclimate data, instrumental observations, and climate model simulations.  Stay tuned.

UPDATE (via Skeptical Science): John Nielsen-Gammon, professor, atmospheric scientist, and Texas State Climatologist looks at the Sheffield paper and compares it with the earlier Dai article.  His summary:

So what’s the take-home message from all this?  It does indeed matter how you estimate evaporation, and better estimates do indeed correspond to smaller global drought trends over time, but those trends are probably not as small as Sheffield et al. calculates.  Drought is still getting worse on a globally-averaged basis.


New England Hurricanes, the forecast every time

12 11 2012

Kevin Anchukaitis

Let me start my first post here at Strange Weather by thanking Julien for the opportunity to join him here at his blog. I’ve been studiously preparing by listening to lots of Tom Waits albums, and although I hadn’t intended for my first post to be about hurricanes in the northeastern United States, some strange weather intervened.

I’m a recent arrival to the Massachusetts coast and now a scientist at the Woods Hole Oceanographic Institution, after spending the previous several years in New York City. While Superstorm Sandy, née Hurricane Sandy, was still several days from landfall in New Jersey, though, the region’s history of deadly hurricanes was already in the front of my mind. In August of 1991 Hurricane Bob scored a direct hit on Falmouth on Cape Cod in Massachusetts — my new home. At barbeques and gatherings this summer, my immediate neighbors were telling their stories of Bob’s “furious” landfall, the wind, the snapping trees, the storm surge, the flooding — and the long aftermath without power. So as Sandy lined up for her run at New England at the end of October, I admit I was somewhat nervously eyeing the tall but spindly locust trees near my house.

New England is not without a reason to keep one eye on the tropics in the late summer and autumn. Besides Bob, the New England Hurricane of 1938, the Great Atlantic Hurricane of 1944, Hurricane Carol in 1954, and Hurricane Donna in 1960. Wikipedia has a list of New England hurricanes. In 1821, a hurricane passed directly over New York City, resulting in 13 feet of storm surge and causing the East River to flow across lower Manhattan south of Canal Street. Yet another reason to be wary about hurricanes in New England lies in the mud and sand of the coastal marshes up and down the New England coast, several of which are disconcertingly within walking distance of my new home. These environments preserve a long record of storm activity in coastal New England going back hundreds or thousands of years.

Jeff Donnelly is a colleague of mine at Woods Hole Oceanographic Institution and one of the world’s experts in paleotempestology (Andrew Alden has a nice write-up on this science, here) — the study of past major storm activity from geological or biological evidence. Jeff uses sediments in coastal environments like marshes to identify and date past storms, but others have also used stable isotopes in tree rings, corals, and cave deposits, as well as historical records.

Marsh sediments from across New England tell a story of past hurricane strikes in the region, some clearly quite large. These environments record the passage of strong storms in the overwash deposits of sand that flood over their barrier with the sea during high waves and storm surges. Shore Drive in Falmouth is just such a barrier, and Sandy demonstrated quite clearly what an overwash deposit on its way to a backbarrier marsh looks like.

In a 2001 paper in the journal Geology, Jeff Donnelly and colleagues used multiple sediment cores extracted from a backbarrier march at Whale Beach, New Jersey, located between Ocean City and Sea Isle City, just to the south of Atlantic City, and close to where Hurricane Sandy made landfall, to reconstruct a history of beach overwash. They found deposits of sand associated with a 1962 nor’easter and another strong storm which they believed was the 1821 Hurricane. They dated a third deposit, thicker than the 1821 sand layer and probably related to an intense hurricane, to between 1278 and 1438 CE. In their article they note that the Whale Beach record suggests an annual landfall probability of 0.3%.

In a 2004 paper in Marine Geology, Donnelly and his team again looked at overwash deposits in New Jersey, this time from Brigantine, just to the north of Atlantic City. Here again they identified a layer of sand in the backbarrier marsh likely corresponding to the 1821 hurricane. They also dated large sand layers to the period between 550 – 1400 CE, which might correspond with the 13th or 14th century event identified at Whale Beach.

Donnelly et al. 2004, Marine Geology

Original caption from Donnelly et al. 2004, Figure 7: Cross-section of Transect 2 at Brigantine. ( p ) Location of radiocarbon-dated samples (see Table 1). Horizontal axis begins at the barrier/marsh boundary. The vertical datum is the elevation of the barrier/marsh interface (approximately mean highest high water).

Further to the east, in another 2001 paper Donnelly and his team used sediment cores from Succotash Marsh (near the fabulous Matunuck Oyster Bar near Point Judith in Rhode Island) to date hurricane strikes to known events in 1938 and 1954, as well as 1815 and the 1630s. Two other overwash deposits were dated to 1295-1407 and 1404-1446 CE. Donnelly and coauthors concluded that “at least seven hurricanes of intensity sufficient to produce storm surge capable of overtopping the barrier beach at Succotash Marsh have made landfall in southern New England in the past 700 yr”

One more, closer to home: In 2009, Anni Madsen and her coauthors (including Donnelly) published dates on hurricane deposits in Little Sippewissett Marsh in Falmouth, Cape Cod, Massachusetts, using optically stimulated luminescence (OSL) dating. This particular core shows a number of overwash deposits over the last 600 years, including probably Hurricane Bob and the 1976 Groundhog Day storm, but is also indicative of some of the difficulties and uncertainties in using backbarrier marshes to reconstruct hurricane strikes: Little Sippewissett Marsh doesn’t have sand layers that obviously date to recorded storms in 1938, 1944, 1954, 1815 and 1635, which include some of the largest to hit this region. Uncertainties arise from, amongst other things: a single core may not record all the storms at a site, storms themselves alter the height of the barrier and inlet channels, dating of events comes with analytical and depositional uncertainty, and in New England strong storms could be hurricanes or nor’easters.

Madsen et al. 2009, Geomorphology

Location of Little Sippewissett March, showing 19th and 20th century storm tracks across the region, from Madsen et al., A chronology of hurricane landfalls at Little Sippewissett Marsh, Massachusetts, USA, using optical dating, Geomorphology 109 (2009) 36–45, 2009

On Dot Earth, Andy Revkin has pointed toward his articles on Donnelly’s Caribbean research, as well as a 2002 paper by Anders Noren on millennium-scale storminess in the northeastern United States.

Bringing us back to Sandy, what does the history and geology of New England hurricanes tell us? There is evidence from all along the coast that powerful storms do occasionally make landfall in the region. The evidence from Whale Beach in New Jersey, near to where Sandy came ashore, records the very strong 1821 hurricane as well as another likely event in the 13th or 14th century. Other strong storms have hit the New England coast at other times in the past millennium. A 2002 article from the Woods Hole Oceanographic Institution quotes Donnelly:

“Most people have short memories,” says Donnelly. In fact, it is estimated that three-quarters of the population of the northeastern US has never experienced a hurricane. Donnelly’s research provides evidence to be heeded. “The geologic record shows that these great events do occur,” he says. “We need to make people aware that it can happen again. We’ve got to have better evacuation plans and we need to equip people to react to a big storm.”

I’m so far agnostic on the precise influence of human-caused climate changes on the track and characteristics of Sandy. The process of sorting out the influence of natural variability from the human-influence on this particular storm has just begun. As Justin Gillis notes in the New York Times Green Blog:

Some [climate scientists] are already offering preliminary speculations, true, but a detailed understanding of the anatomy and causes of the storm will take months, at least. In past major climate events, like the Russian heat wave and Pakistani floods of 2010, thorough analysis has taken years — and still failed to produce unanimity about the causes.

The influence of rising sea levels, particularly along the east coast of North America, no doubt has to be factored into understanding current and future storm surges. But what the geological and historical record indicate is that even in the absence of a human-influence on the strength, track, or magnitude of tropical storms, we would still need to be prepared for destructive coastal storms to strike areas of high population and considerable infrastructure. Paleoclimatology — in this case, paleotempestology — nearly always provides us with evidence of an even greater range and diversity of behavior of the climate system then we’ve witnessed over the relatively short period of instrumental observations, and gives an idea of some of the events — droughts, floods, and storms — that we need to keep in mind when figuring out how to build resilient communities.